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DYNAMIC REPAIR ALLOCATION FOR A K OUT OF N SYSTEM
3
1 MAINTAINED BY DISTINGUISHABLE REPAIRMEN.

b by
[ Micheael N. Katehakis and Costis Melolidakis
Technical University of Crete Technical University of Crete
r and Columbia University
ABSTRACT

We conmider a K out of N system maintained by R repairmen,
where the lifetime of the il component is an exponentially distributed
random variable with parameter (; . Repairmen are distinguishable, and
}‘ the time it takes the rth repairman to repair a failed component is an
exponentially distributed random variable with parameter A, . Repaired
components are as good as new and preemptions are allowed. We show
that the policy which assigns the faster repairmen to the most reliable
components is optimal with respect to several optimality criteria.

: The approach we take in establishing stochastic optimality with
respect to the number of functioning components is of wide applicability
to different classes of stochastic optimization problems.

1. Introduction. Consider a system chat consists of N components. The

e “ - ——

system is functioning when at least K out of itse N components are
operating. Components may fail, their lifetimes being exponentially distributed
random variables. Failures occur independently and a component may fail
even when the system is not functioning. The rate of failure of component |
is denoted by i , i = 1,...,.N . The gystem is maintained by R repairmen.

At most one repairman can be assigned to a failed component and a repairman

{ may switch from one failed component to another instantaneously. The time |

1 required by the rth repairman to complete the repair of any failed component |
is considered to be an exponentially distributed random variable with

*This research was partially supported by the NSF under Grant NO.
BCS-86-07671 and the AFOSR under contract 87-0072.




parameter Ap , r = 1,..,R . Repaired components are as good as new.

We show that the policy under which the fastest repairman (i.e., the one
with the largest repair rate) is assigned to the most reliable failed component
(i.e., the one with the smallest failure rate) the next to the fastest repairman
is agsigned to the next to the most reliable failed component, etc. (FR-MRC
policy), possesses the following optimality properties.

It maximizes stochastically the number of working components of the system at
any time instant t . Hence, it maximizes both the expected diascounted system
operation time for all diacount rates B , B > 0 and the average saystem
operation time. Furthermore, it maximizes stochastically the time the system

spends in functioning states before a failure occurs, and it minimizeas

_—
.

stochastically the time ths system is down before it starts operating again.
This problem has been studied for the case in which R = 1 in Derman
Lieberman and Ross (1980) , where it is shown that the pertinent policy
stochastically maximizes the operation time of the aystem during any time
interval. The case in which R =1, failure and repair times are
}‘ exponentially distributed and the repair rates depend on the components has
been considered in Katehakis and Derman (1984) with respect to the average

system operation time, and in Katehakis and Melolidakis (1987), with respect to

q] the stochastic optimality of the system nonfunctioning time. See also Smith
(1978).
2. Problem formmlation. Under the assumptions made, at any time the status

of all components is given by a vector x =(x1,...,xN) with % =1 or 0
according to whether the it} component is functioning or failed. Thus, the
set of all possible states is S = {0,1}N . For any state x ¢ S , we define
.t.t“ (6k|x) = (XI,-.-,xk_l,G,xk"‘l,...,xN) » 6 = 0, 1 [ k = 1,00.“ » Illd we
‘ denote the sets of failed and functioning components by Co(x) and C,(x) ,

B
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i.e., Co(x) = {i | ; =0}, Ci(x) = {i| x; = 1} respectively.

The cardinality of a set A is denoted by JA! . For notational simplicity we
define #xt = IC,(x)! . Let Sp = {(x: ixd < K} denote the set of failed
states and 8j =(x : ixl 2 K} denote the set of functioning states of the
system.

We number the components according to their failure rates , i.e.,

j&i if and only if Hj é ij , and the repairmen reversely to their repair
rates, i.e., r € 8 if and only if Ap > Ag .

Let then q(x) be the qth failed component at state x and let aq(x)
be the order of q(x) . Let also A(x) = IE(Y) aq .

The set of repairmen is denoted by R and IRl = R. Let R(x) denote
the maximum number of components that can be under repair when the system
is in state x , i.e.,

R(x) = min {R, ICe(x)I} .

Let W(x) be the set of all posgible choices of components on which one

may decide to assign repairmen when the system is in state x , i.e.,
W(x) = { B: B c Co(x), IBl ¢ R(x) } .

For B € W(x) , let A(B,x) be the set of possible choices of repairmen one
may decide to use if he chooses B , i.e,,

ABx) ={C:C<c<R , ICl =IBI }.

An assignment of repairmen C ¢ A(B,x) to components B € W(x) is an
1-1 and onto mapping from B to C . Denote by %(B,C) the set of these
mappings and let A(x) represent the available actions at state x, i.e.,

A(x) = { (B,C#) : B € W(x), C € A(B,x), ¢ € #(B,C) }

The problem of the stochastic maximisation of the number of functioning
components at any time instant t can be formulated as a family of Markovian
decision problems in the following way.




abatl
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Since the state space is finite we can use the device of uniformization
(see Lippman (1975) and references given there) which essentially means that
we can consider (dummy) transitions back to the same state at such a rate
that the sojourn times X1, X2, .. of the processes are independent
exponential random variables with a common rate v . The constant v can
be chosen as any number greater than or equal to the sum of the trangition
rates. The sum Sp = X) + X2 +=+ X, represents the time of the nth
transition of the system. Let n{ = sup {n: Sp 6 t} , i.e., ny is is the
record of the last transition that occured up to time t . Because of the
uniformization, the distributions of Sp and ng are independent of the
particular policy we follow. Given a policy ® we define the random variable
Np(tix) , where Np(t;x) = 0,..., N , represents the number of working
components at time t if the state at time 0 was x . Let No denote the
FR-MRC policy.

Our aim ig to show that
P( Nuo(t;x) a k) » P( Np(t;x) a k) for all policies w, 0 6 k 6 N (1) .

Let Np(nix) , n a1, be the number of working components after the nth
transition if the state at time 0 was x . Then, Np(t;x) = Np(ng;x) and

therefore, since
P( Np(ng;x) ak ) = Ip=)P( My(nijx) ak ) P(Dt =n) , O&k&N.
it is sufficient to show that
P( Nno(n;x) 2k ) > P( Ny(n;x) ak ) for all policies w , all nal

After uniformization, the relevant family of Markovian decision problems will be
the following.
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Foreach n , n»1 ,and for each k , 0 s k & N congider
problem [in,c which is specified by the following elements.
1. State space: the set {(x;m) : x€ S, m =0, l,..., n }.
2. Action sets: the sets A(x;m) = A(x).
3. System dynamics: when the system is in state (x;m) and action

a = (B,C,$) € A(x) is chosen , the following transitions are possible :

. ) . Ap(b)
i) to state (lp,x;m1) , b € B, with probability —

ii) to state (0g,%;m1) , 8 € Cj(x) , with probability —“3— ,

the

iii) and to state (x;m-1) with probability Y- AMx,a) - uix) where

v ’

A(x,a) = tbieb N’(bi) » u(x) = Elecl(x) He and v is any constant

greater than or equal to the sum of the transition rates.
iv) Reward structure
1 if axt »k and m =0
r(x;m) =
0 otherwise

It is easy to see that the objective function of (lln,x) represents the

probability P( Npg(n;x) » k ) , which is to be maximized.

Take n a1, and fix k, 0 € k £ N. Let vg(xin) denote the value of

a policy w in Mhy and let v(x;n) denote the value of an optimal policy.

Then v{(.;.) is the unique solution to the following system of functional

equations;
. = 1 - - .
v(x;m+l) ae-A,(‘x) = [ r(x) + [v -~ A(x,a) - u(x)]v(x;m) +
+ Toep Mo(b) Y(gcv) Xim) + Dy % v(0m) |
where = = 0,1,...,n~1 .

(2)




In the next section we eatablish that the values of the FR-MRC policy
satisfy (2) and thus it is stochastically optimal with respect to the number of
functioning components in the system at any time instant t .

To show that the FR-MRC policy minimizes (maximizes) stochasticaly the
time the system spends in nonfunctioning (functioning) states we firat need to
define the random variables Yp(x) , Zn(x) , where VYg(x) (respectively
Zn(x)) denotes the first passage time from a state x € S§g9 to the set of
functioning atates S] (respectively from a state x € S} to the set of failed
states Sg ) under a policy n . Related to these two random variables are
the following two families of Markov decision processes:

The family (Il,) , n a 1 , that corresponds to Yn(x) , is defined by:
1. State space : The set { (x;m) : x € S, m = 0, l,eee, n }.
2. Action seta : The sets A(x;m) = A(x).
3. System dynamics : (I) When the aystem is in state (xm) , x € Sy

and action a = (B,C,$) € A(x) is chosen , the following transitions are

possible :

. . . Ag(b)
i) To state (lp,x;m-1) , b € B, with probability —

ii) To state (0g,x;m-1) , 8 € C1(x) , with probability -E{,-

iii) And to state (x;m-1) with probsbility -—— M’-“-% —u(x) , where

A(x,a) = zbieb M(bi) ,» p(x) = xtecl(x) He and v is any constant

greater than or equal to the sum of the transition rates.
(II) When the system is in state (xm) , x € S; and action a € A(x) is
chosen, then the next state is (x;m-1) with probability 1.

iv) Reward structure

s mms wLe L ar el e e aw e e —_— e S e e rham. e vt Amwm e w a
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1 if x€S) and m =0
r(x;m) =

0 otherwise
The family (M) , n » 1 , that corresponds to Zn(x) , is defined by:

The same state and action sets as in (fl) and a transition law described as
that of (li) , but with the places of Sg and S) reversed. Similarly, the
cost in (M) is defined as in (M) , but with Sg in the place of Sj . The
objective function is to be maximized in () and to be minimized in (ly) .
Let Yud(x) ( respectively z“d(x) ] represent the number of transitions to
absorbtion from an initial state (xin) in (M) [ respectively () 1 . It is
easy to see that the objective function in (p) { reapectively (p) 1]
represents the P( Ypd 6 n ) [ respectively P( Zzd ¢ n ) 1. To establish the
stochastic optimality of W, for the first passage problem , i.e. that Vv n,
P( Yng‘n)‘ P( Yud € n ) [ respectively P( z,,g‘n)sp( Znedén) ],
it is necessary and sufficient to establish the optimality of mng in (lIp) and
() (see Katehakis-Melolidakis (1987)].
Remark. The approach to stochastic optimality using uniformization and

Markovian Decision Theory is applicable in more general situations.

3. Optimality properties of the FR-MRC policy.
We first proceed to show that,

Theorem 1. The FR-MRC policy stochastically maximizes the number of
functioning components in the system at any time instant t .
Proof. The proof is by establishing the optimality of my in the following

recursive equations .
v(x;m+l) = a?A’(x) % [ r(x) + [v - A(x,a) - p(x)]v(x;m) +

* Tyep M(b) V(lg(o) %W + Eily %y |
(3)m+l




1 if #xt ak and m =0

r(x;m) = [
0 otherwise
So, we will show that:

v(ix;m + 1) = ;'1- [ r(x) + [v - A(x) - u(x)]v(x;m) +

+1 ﬁ__(_’l‘)kqv(laq(x).x;u) + 2}:1 X g, v(0,x;m) ]
(4)m+1
[ 1 if Ixt 2k and m =0
r(x;m) =
0 otherwise

The proof is by induction on =m .

For m = 0 there are four cases.

Case 1: 11j,xd < k for i € Co(x). Then, whatever the action a ,
v(x;1) 1is independent of a . Hence, (4); bholds trivially.

Case 2: 81;,x8 = k for i € Co(x). Then, certainly mn, maximizes (3))

among all possible policies ¢ .
Case 3: #lj,x0 =k +1 for i € Co(x). Then, v(x;1l) is independent of the

particular policy employed.
Case 4: 11j,x0 > k + 1 for i € Co(x). Then, again any action will guarantee a
constant cost.
So, (4); is true. Now assume (4)y is true up to m included. To show that
it is true for m + 1 also, we need to establish the following lemmas.

Lesmn 1. For j &€ i, i,j € Co(x), the following hold :

a)  v(lj,x;m) » v(1lj,x;m) (5)m

b)  v(lag(lj,x):1j.%im) » v(lag(lj,x)s1li,Xim) (6)m

c) v(x;m) & v(1lj,x;m) (Mn

d) v(laq(x).x;m) & v(lag(lj,x):1j:%:m) (8)m
8

-
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Proof. The proof is by induction.
For m =0 (5),(6),(7) and (8) are certainly true.
Assume they are true up to m - 1 included. We show that they are also
true for m . The proof involves the following steps:
a) ( (4)p and (5)p-] and (6)p-] and (7)p-1 ) implies (5)n
b) ( (5)m ) implies (6)y
c) ( () and (5)p-1 and (7)1 and (8)p-1 ) implies (7)n
d) ( (5) and (7)g ) implies (8)y
More precisely:

a) (5)a-1 implies that for i,j € Co(x), j % i,
[v - AM1j,%) - pji - u(x)]1[v(1jx;m-1) - v(lj,x;m-1)] 0 =
(v - A(1j,%) - u(x)][v(1j,%m1) - v(1j,x;m-1)]
» pilv(lj,xm-1) - v(x;m-1)] - pilv(li,x;m-1) - v(x;m-1)] (9)
Since uj ¢ ui , (7T)p-) and (9) imply that:
(v - A1 %) - u(x)]{v(1jx;m1) - v(1j,x;m=1)] >
» ujlv(ly,x;m-1) = vixm-1)] - pilv(li,x;m1) - v(x;m-1)]

which in turn,after observing that #x8 = Nyf ==> R(x) = R(y) ==> A(x) = A(y),

leads to :
(v - A(Qjx) - uj - w(@)]v(ljx;m1) + pjv(x;m1)] »

(v - A(14,%) - i - p(x)]v(li,x;m-1) + pijv(x;m-1)] (10)

Also (6)p-] implies that :

R(lj'x{q R(14,

Zq=1 v(lag(lj,x)s1j,xim1) » zq=1 x{qv(lgq(li,x),li,x;rl) (11)




and (5)n-] implies that :
Lieco(xyteV (08 1jsxim 1) > By (gv(08, 15, 35m-1) (12)
By adding (10), (11) and (12) and using (4)y we conclude that (5)y holds.

b) To show that (6)p is true, we have to consider cases.

Case 1. aq(lj,x) < j, 1i.e., there are at least q non—functioning compo—
nents before the jth one. Then, j & i ==> aq(1j,x) = aq(1j,x) and (6)m
follows from (5)y .

Case 2: aq(lj,x) A j, i.e., there are less than q non-functioning compo—
nents before the jth one. Then there are two subcases.

Subcase 2a: J <« aq(lj,x) 4 i . The jth position then counts for li,x

and hence aq(li,x) a j. Therefore, repeated use of (5)p gives :

v(lag(1lj,x)s1j.xim)  v(lag(1j,x)slaq(li,x)%:m) * v(li,lag(li,x):X:m)

which establishes (6)y .
Subcase 2b: J < i é aq(lj,x) . Then aq(lj,x) = aq(li,x) and the result
follows from (5)y again.

Hence (6)y has been established.
c) To show (7)g we first observe that (7)p-] implies that :
(v = AOO) - p(x)]vix;m1) 6
é (v~ ANx) - uj - p(x)]v(lj,xm1) + pjv(x;m-1)] (13)
and that,
Eyeco(x)Hev (00 xim-1) & Fy o 0yitgv(0g,15,%;m-1) (14)

We next consider two cases .

10
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Case 1:@ R(x) = R(1j,x), i.e., in both x and lj,x there are more non-

functioning components than available repairmen.
Then, (8)p-1 leads to :

R(x) (lj,x{

R
Zq=1 Aqu(lag(x),x;m-1) 2q=1 qv(laq(1j,x)s 1 %;m1) (15)

Adding together (13), (14), and (15) and using (4)y we get :

vix;m) & v(lj,x;m) , which establishes (7)y for this case.

Case 2: R(x) = R(1lj,x) +1, i.e., in lj,x there are more repairmen avai-
lable than failed components.

Again (7)p-1 and (8)p-] lead to :

R(lj,x)

v = A0) - uj - u@)]Ivigm-l) + F )" "Aqu(lag(x),x;m-1) +

* Lyec, ()M gV (08 xim-1) €

R(1;,
€ [v-A@x) -uj-p)]v(ljxml) + }:qil" )

kqv(laq(lj,x).lj.x;n—1)+
* zleco(x)i‘."(ot-lj.x;rl) )

Since, in this case, A(x) = A(1j,x) + Ag(x) » (16) may be rewritten as :

R(1;,x)
(v - A(x) - p(x)]v(x;m1) + 2q=1 Aqv(lag(x)X;m-1) + Ag(x)v(lj,x;m-1)

* Lyec, ()08 x;m1) &
R 1'.
€ [v-A1jx) - pj - p(x)]v(lj,xm1) + Iqil" x)qu(laq(lj,x).lj,x;rl)

+ xleco(x)"tv(o"lj'X;"l) + pjv(x;m-1) | (an

Now, since for this case R a Cq,(x) , an(x)(x) is the largest in order

component in Cy,(x). Hence, j & ap(x)(x) which, using (5)p-1 ,implies that

11




Aa(x)v(lan(x)(x),x;n—l) % Ap(x)v(1j,x;m1) (18)

But then, using (18) in (17) to strengthen the inequality and using (4)m

we conclude that (7)y holds for this case also.

d) To show (8)y we distinguish two cases again.
Case 1: aq(lj,x) < j. Then aq(lj,x) = ag(x) and (8)y follows from (7)g
Case 2: aq(lj,x) > j . Then aq(lj,x) is the next to the aq(x) failed
component, which implies that ag(x) » j. There are two subcases now:
Subcase 2a: aq(x) = j. Then, (8)y follows from (7)y .
Subcase 2b: aq(x) > j. Then, using (5)n and (7)p we get:

V(lag(x):*:m) & v(lag(x)slaq(lj,x),%:m) € v(1j lag(1lj,x)sX;m)

which establishes (8)y .

This finishes the proof of Lesma 1. 0

Lemma 2. Among all possible actions that use the first R(x) repairmen, the
action determined by w, is the best in the optimization of (3)g+] -
Proof. It is sufficient to show that whenever r a s ( r,s representing
the order of repairmen) and j € i ( j,i representing the order of compo—
nents) then, it is better to assign j to r and i to s than vise versa.
The conclusion will then follow after a finite number of permutations of re—
pairmsen.

Thus, it suffices to show that if A v {r} v {s} is the set of the R(x)
first repairmen , r € s , and if j 6 i then, for any assignment ¢ using
all of them, we have:

12
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[v-Ar-Ag-E e Mg (x) JvOx;m) + Apv(lj,x;m) + Agv(li,Xim) + I \Aqu(le-1(q)sXim)
+ tcec,(x)":"w"’“') a

[v—kr—k,—}:qenkq-u(x)]v(x;l) + Apv(li,x;m) + Agv(lj,x;m) + 2q£Akqv(1,_1(q),x;n)
* Lyec, (x)Hsv(00sxim) (189)

But,since Ar a Ay , (19) is equivalent to v(lj,x;m) & v(lj,x;m) , which is
true by Lemma 1(a). 0O

Now assume that at state x repairmen get assignments sequentially. Then,

Lessa 3. In the optimization problem (3)m+] , at each state x we should
assign repairmen according to their rates, i.e., first assign the fastest,
then the next to the fastest, e.t.c.

Proof. Assume we have already assigned a set of A repairmen, A € R with

IAl < R(x). Then we want to show that if r €s , r,s ¢ 2\ A, then:
(v =2~ }Zq“kq = u(x)Jv(x;m) + Apv(lj,x;m) + zququ(l,-l(q).x;-) +

+ I

seCo (x) g7 (08rXim) 3

[v = As = Lpephq — w(X)Iv(xim) + Agv(lj,xim) + I . Aqv(le-1(q) Xim) +

+ 2cec.,(x)"t"(°""") (20)

where i is the failed component to which we decide to assign the next re—
peirman and ¢ is any policy.
Now, since Ag 6 Ap , (20) is equivalent to: v(x;m) » v(1lj,x;m) which

is true ( Lemma 1(c) ). O
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Iemma 4. In the optimization problem (3)g+] , at state x we should assign
no less than R(x) repairmen to failed components.

Proof. The proof is by induction on R(x) . Assume that, according to some
policy, we have assigned A repairmen, with I|Al < R(x) . We show that it is

then better to assign one more. Take r € R\ A . We want to show that,
[v - Apr - quAAq = w(x)]v(x;m) + Apv(li,x;m) + Iquxqv(lq,_l(q).x;l) +
+ luco(:)l-l,v(oc.le) L]

s (v-I

«qu - u(x)jv(x;m) + Iquxqv(l,_l(q).x;I) + zlec,(x)“lv(o"x;')

(21)
where i is any failed component that does not get assigned a repairman from

A. But (21) is equivalent to v(x;m) 6 v(1lj,x;m) which is true (Lemma 1(c)).O

Lemmas (3), (4) and (5) are enough to complete the induction step in the
proof of Theorem 1. Indeed, in the optimization of (3)g+] at state x we

should use the first R(x) repairmen (lemmas 3 and 4 combined) and among all
policies that use these first R(x) , w, is the beat (lemma 2). Hence, the

inductive step is complete and Theorem 1 has been proved.n

Co y 1. The FR-MRC policy maximizes both the total expected
discounted operation time of the system and the availability of the system.

Proof. Notice that since the total discounted operation time of the system is
given by J5 eBt P(Ny(t;x) » K) dt and since the average operation time of
the system is given by %&: % J’E P(Ny(t;x) » K) dt, the stochastic optimality

of w, implies its optimality with respect to the other two criteria.

Theorem 2. The FR-MRC policy stochastically minimizes the time the system
spends in non-functioning states until it starts operating again. Moreover,

no stochastically maximizes the operation time of the system untill failure.
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Proof. According to the discussion in section 2 , it is sufficient to prove

the optimality of n, for the two families (lI,) and (I;) . Now, it is very
easy to chaeck that all the arguments in the proof of Theorem 1 go through
for the (li;) problem also, establishing thus the optimality of mn, . The same
arguments work for (lip) also, but with the sign of all numbered inequalities

reversed. O
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